41 research outputs found

    Multiple-fault detection and identification scheme based on hierarchical self-organizing maps applied to an electric machine

    Get PDF
    Strategies of condition monitoring applied to electric motors play an important role in the competitiveness of multiple industrial sectors. However, the risk of faults coexistence in an electric motor and the overlapping of their effects in the considered physical magnitudes represent, currently, a critical limitation to provide reliable diagnosis outcomes. In this regard, additional investigation efforts are required towards high-dimensional data fusion schemes, particularly over the features calculation and features reduction, which represent two decisive stages in such data-driven approaches. In this study, a novel multiple-fault detection and identification methodology supported by a feature-level fusion strategy and a Self-Organizing Maps (SOM) hierarchical structure is proposed. The condition diagnosis as well as the corresponding estimated probability are obtained. Moreover, the proposed method allows the visualization of the results while preserving the underlying physical phenomenon of the system under monitoring. The proposed scheme is performed sequentially; first, a set of statistical-time based features is estimated from different physical magnitudes. Second, a hybrid feature reduction method is proposed, composed by an initial soft feature reduction, based on sequential floating forward selection to remove the less informative features, and followed by a hierarchical SOM structure which reveals directly the diagnosis and probability assessment. The effectiveness of the proposed detection and identification scheme is validated with a complete set of experimental data including healthy and five faulty conditions. The accuracy’s results are compared with classical condition monitoring approaches in order to validate the competency of the proposed method.Peer ReviewedPostprint (author's final draft

    Diagnosis methodology for identifying gearbox wear based on statistical time feature reduction

    Get PDF
    Strategies for condition monitoring are relevant to improve the operation safety and to ensure the efficiency of all the equipment used in industrial applications. The feature selection and feature extraction are suitable processing stages considered in many condition monitoring schemes to obtain high performance. Aiming to address this issue, this work proposes a new diagnosis methodology based on a multi-stage feature reduction approach for identifying different levels of uniform wear in a gearbox. The proposed multi-stage feature reduction approach involves a feature selection and a feature extraction ensuring the proper application of a high-performance signal processing over a set of acquired measurements of vibration. The methodology is performed successively; first, the acquired vibration signals are characterized by calculating a set of statistical time-based features. Second, a feature selection is done by performing an analysis of the Fisher score. Third, a feature extraction is realized by means of the Linear Discriminant Analysis technique. Finally, fourth, the diagnosis of the considered faults is done by means of a Fuzzy-based classifier. The effectiveness and performance of the proposed diagnosis methodology is evaluated by considering a complete dataset of experimental test, making the proposed methodology suitable to be applied in industrial applications with power transmission systems.Peer ReviewedPostprint (published version

    Industrial data-driven monitoring based on incremental learning applied to the detection of novel faults

    Get PDF
    The detection of uncharacterized events during electromechanical systems operation represents one of the most critical data challenges dealing with condition-based monitoring under the Industry 4.0 framework. Thus, the detection of novelty conditions and the learning of new patterns are considered as mandatory competencies in modern industrial applications. In this regard, this article proposes a novel multifault detection and identification scheme, based on machine learning, information data-fusion, novelty-detection, and incremental learning. First, statistical time-domain features estimated from multiple physical magnitudes acquired from the electrical motor under inspection are fused under a feature-fusion level scheme. Second, a self-organizing map structure is proposed to construct a data-based model of the available conditions of operation. Third, the incremental learning of the condition-based monitoring scheme is performed adding self-organizing structures and optimizing their projections through a linear discriminant analysis. The performance of the proposed scheme is validated under a complete set of experimental scenarios from two different cases of study, and the results compared with a classical approach.Peer ReviewedPostprint (author's final draft

    Time-frequency analysis based on minimum-norm spectral estimation to detect induction motor faults

    Get PDF
    Producción CientíficaIn this work, a new time-frequency tool based on minimum-norm spectral estimation is introduced for multiple fault detection in induction motors. Several diagnostic techniques are available to identify certain faults in induction machines; however, they generally give acceptable results only for machines operating under stationary conditions. Induction motors rarely operate under stationary conditions as they are constantly affected by load oscillations, speed waves, unbalanced voltages, and other external conditions. To overcome this issue, different time-frequency analysis techniques have been proposed for fault detection in induction motors under non-stationary regimes. However, most of them have low-resolution, low-accuracy or both. The proposed method employs the minimum-norm spectral estimation to provide high frequency resolution and accuracy in the time-frequency domain. This technique exploits the advantages of non-stationary conditions, where mechanical and electrical stresses in the machine are higher than in stationary conditions, improving the detectability of fault components. Numerical simulation and experimental results are provided to validate the effectiveness of the method in starting current analysis of induction motors.Consejo Nacional de Ciencia y Tecnología (Proyecto 487058)Universidad de Guanajuato (Proyecto 248495/2019

    Thermography-based methodology for multifault diagnosis on kinematic chain

    Get PDF
    The procedures for condition monitoring of electromechanical systems are undergoing a reformulation, mainly, due to the current thermographic affordability of infrared cameras to be incorporated in industrial applications. However, high-performing multifault data-driven methodologies must be investigated in order to infer reliable condition information from the thermal distribution of not only electrical motors but also of shafts and couplings. To address this issue, a novel thermography-based methodology is proposed. First, the infrared capture is processed to obtain a thermographic residual image of the kinematic chain. Second, the thermal distribution of the image's regions of interest is characterized by means of statistical features. Finally, a distributed self-organizing map structure is used to model the nominal thermal distribution to subsequently perform a fault detection and identification. The method provides a reliability quantification of the resulting condition assessment in order to avoid misclassifications and identify the actual fault root-causes. The performance and the effectiveness of the proposed methodology is validated experimentally and compared with the classical maximum temperature gradient procedure.Peer ReviewedPostprint (published version

    Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines

    Get PDF
    Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.Peer ReviewedPostprint (published version

    Fundamental frequency suppression for the detection of broken bar in induction motors at low slip and frequency

    Get PDF
    Producción CientíficaBroken rotor bar (BRB) is one of the most common failures in induction motors (IMs) these days; however, its identification is complicated since the frequencies associated with the fault condition appear near the fundamental frequency component (FFC). This situation gets worse when the IM slip or the operation frequency is low. In these circumstances, the common techniques for condition monitoring may experience troubles in the identification of a faulty condition. By suppressing the FFC, the fault detection is enhanced, allowing the identification of BRB even at low slip conditions. The main contribution of this work consists of the development of a preprocessing technique that estimates the FFC from an optimization point of view. This way, it is possible to remove a single frequency component instead of removing a complete frequency band from the current signals of an IM. Experimentation is performed on an IM operating at two different frequencies and at three different load levels. The proposed methodology is compared with two different approaches and the results show that the use of the proposed methodology allows to enhance the performance delivered by the common methodologies for the detection of BRB in steady state.CONACyT scholarship (415315)Project FOFI-UAQ 2018 FIN201812PRODEP UAQ-PTC-385 gran

    Incremental learning framework-based condition monitoring for novelty fault identification applied to electromechanical systems

    Get PDF
    A great deal of investigations are being carried out towards the effective implementation of the 4.0 Industry new paradigm. Indeed, most of the machinery involved in industrial processes are intended to be digitalized aiming to obtain enhanced information to be used for an optimized operation of the whole manufacturing process. In this regard, condition monitoring strategies are being also reconsidered to include improved performances and functionalities. Thus, the contribution of this research work lies in the proposal of an incremental learning framework approach applied to the condition monitoring of electromechanical systems. The proposed strategy is divided in three main steps, first, different available physical magnitudes are characterized through the calculation of a set of statistical-time based features. Second, a modelling of the considered conditions is performed by means of self-organizing maps in order to preserve the topology of the data; and finally, a novelty detection is carried out by a comparison among the quantization error value achieved in the data modelling for each of the considered conditions. The effectiveness of the proposed novelty fault identification condition monitoring methodology is proved by means of the evaluation of a complete experimental database acquired during the continuous working conditions of an electromechanical system. © 2018 IEEE.Peer ReviewedPostprint (author's final draft

    Novelty detection based condition monitoring scheme applied to electromechanical systems

    Get PDF
    This study is focused on the current challenges dealing with electromechanical system monitoring applied in industrial frameworks, that is, the presence of unknown events and the limitation to the nominal healthy condition as starting knowledge. Thus, an industrial machinery condition monitoring methodology based on novelty detection and classification is proposed in this study. The methodology is divided in three main stages. First, a dedicated feature calculation and reduction over each available physical magnitude. Second, an ensemble structure of novelty detection models based on one-class support vector machines to identify not previously considered events. Third, a diagnosis model supported by a feature fusion scheme in order to reach high fault classification capabilities. The effectiveness of the fault detection and identification methodology has been compared with classical single model approach, and verified by experimental results obtained from an electromechanical machine. © 2018 IEEE.Postprint (author's final draft

    Identification of the electrical load by C-means from non-intrusive monitoring of electrical signals in non-residential buildings

    Get PDF
    Producción CientíficaLa acción combinada de diferentes equipos conectados a una instalación eléctrica es capaz de provocar cambios inesperados en el tipo de carga dentro de la instalación; estas variaciones de carga son responsables de algunas fallas eléctricas. En este artículo se presenta una metodología para clasificar e identificar los tipos de carga en entornos industriales. Las cantidades de energía (EPQ) y los valores actuales se utilizan para establecer índices con el fin de utilizarlos como características para un algoritmo C-means y realizar la clasificación de carga. La experimentación se realiza en un centro de salud recogiendo datos eléctricos en diferentes tableros de distribución eléctrica. Los resultados obtenidos del método de clasificación muestran variaciones en el comportamiento de la carga a lo largo del día. Además, algunas clases se pueden utilizar para reconocer equipos en la instalación eléctrica para su posterior inspección o detección de fallas
    corecore